
Knopflerfish
OSGi Tutorial v2

A Step by Step Introduction to OSGi Programming

Based on the open source
Knopflerfish OSGi Framework

www.knopflerfish.org

Originally by Sven Haiges 2004 (sven.haiges@vodafone.com)

Updated by Erik Wistrand 2009 (wistrand@makewave.com)

Copyright © Sven Haiges 2004. All rights reserved.
Copyright © The Knopflerfish Project 2009. All rights reserved.

Knopflerfish OSGi Tutorial v2 page 1

mailto:wistrand@makewave.com

Table of Contents
1 Introduction ..3

1.1 Original introduction by Sven Haiges...3
1.2 Updated introduction by Erik Wistrand..3

2 Installing Knopflerfish OSGi ...4
3 Creating your first bundle ..7

3.1 Create a new project for your first bundle ...7
3.2 Create the manifest.mf File ..7
3.3 Create an Ant build file ..8
3.4 Create the Activator class ...8
3.5 Build and install your first bundle ..10

4 Creating your first service ..12
4.1 Update the manifest.mf File ...12
4.2 Create the service interface ..12
4.3 Create the service implementation ...13
4.4 Create an Activator that registers the date service ...13
4.5 Build and install the date service bundle ..14

5 Using other services ...15
5.1 Update the manifest.mf file ..15
5.2 Retrieve a service – the bad way ..16
5.3 Using a ServiceListener to dynamically bind services ..18
5.4 Using a ServiceTracker to track services ...21
5.5 Using Declarative Services to track services ...22

6 Example source code..24
7 References ..25

Knopflerfish OSGi Tutorial v2 page 2

1 Introduction

1.1 Original introduction by Sven Haiges
This tutorial introduces you to OSGi programming based on the open source Knopflerfish OSGi
framework. I chose Knopflerfish, because it is easy to install and provides a great desktop GUI,
that will help you to get your first bundles deployed in an OSGi Framework.

First, the reader is quickly introduced to the installation of Knopflerfish. Second, you will create
your first OSGi bundle and deploy it in this framework. Step by step, you will create more
bundles, register and retrieve services and manage their dependencies. By the end of this tutorial,
you should have a basic understanding of OSGi programming.

Please notice the references at the end of this document for further information about OSGi and
other tutorials. The author would like to tank the maintainers of Knopflerfish for their great
OSGi Framework. Please also have a look at the Knopflerfish website (www.knopflerfish.org) to
find more about this framework.

1.2 Updated introduction by Erik Wistrand
First, thanks to Sven for writing the original tutorial!

Since 2004, OSGi adaption has become much more widespread and the specification has evolved
to version 4. This updated tutorial reflects this by making sure the examples work on the latest
(2.2) release on the KF framework and by adding a chapter about Declarative Services. Screen
snapshots has also been updated, and full source to all examples are available for download at
the KF website.

This tutorial including all the examples are available at the Knopflerfish subversion repository:

https://www.knopflerfish.org/svn/knopflerfish.org/trunk/docs/kf_osgi_tutorial/

Knopflerfish OSGi Tutorial v2 page 3

https://www.knopflerfish.org/svn/knopflerfish.org/trunk/docs/kf_osgi_tutorial/

2 Installing Knopflerfish OSGi
Installation of Knopflerfish is really easy. Point your web browser to
http://www.knopflerfish,org and go to the download page.

I recommend downloading the complete framework (approx. 18 MB, including all sources and
documentation). Make sure that you have a current Java software development kit installed. I
also assume that you have access to an IDE such as the open source Eclipse (by the way,
Eclipse is also an OSGi Framework).

The downloaded file will have a name similar to knopflerfish_osgi_<version>.jar

Next, start the downloaded jar file by double-clicking on it, or by running

 java -jar <downloaded jar file>

if you don't have a desktop environment, you can start the installation in batch mode using

 java -jar <downloaded jar file> -batch

The default installation directory is the current directory. When installation is complete, you will
have a new directory

 <install-directory>/knopflerfish.org/osgi

To start the Knopflerfish Framework, you can now simply double-click on the
framework.jar file that you will find in the directory

<install-directory>/knopflerfish.org/osgi/framework.jar

You can also type the command

java -jar framework.jar

You may see a command window opening and soon after that the Knopflerfish OSGi Desktop is
starting up.

Note: if you get an OS/firewall warning about Java trying to act as server, this is because the
default startup includes an OSGi web server. The KF Desktop may also try to access update
informationon the KF website

Knopflerfish OSGi Tutorial v2 page 4

Congratulations!

You successfully installed Knopflerfish and started up the framework for the first time. You can
find more information about Knopflerfish startup options and the Knopflerfish Desktop on the

Knopflerfish OSGi Tutorial v2 page 5

Figure 2: The Knopfle OSGi Desktop

Figure 1: Console output from the Knopflerfish OSGi framework

KF website: http://www.knopflerfish.org.

The Knopflerfish Desktop let's you manage the KF framework. It is the visible part of the
management agent for your framework. For example, you can install new bundles, start
and stop them, update bundles or uninstall them.

Knopflerfish OSGi Tutorial v2 page 6

Figure 3: Desktop toolbar

3 Creating your first bundle

In this chapter, you will create your first OSGi bundle and deploy it in the Knopflerfish
framework. We assume that you have access to an IDE, such as Eclipse. The source code for all
of these examples are available on the KF web sites, including Ant build files. See chapter 6 for
details

In OSGi programming, the elements that can be installed in a framework are called
bundles. Bundles are simply jar files, that typically contain the Java class files of the service
interfaces, their implementation and some more meta information in a META-
INF/manifest.mf file. Services are Java interfaces and once your bundle registers a service
with the OSGi framework, other bundles may use your published service.

Your first bundle will simply create a background thread which prints out “Hello World”
every second.

3.1 Create a new project for your first bundle
Open your IDE, such as Eclipse, and create a new Java Project. Name it simplebundle.
Create separate folders for your source code and the generated output (I recommend src
and out). Make sure that you import the framework.jar file in your Java build path.
Otherwise, you will not be able to access the OSGi classes and interfaces provided by
Knopflerfish.

3.2 Create the manifest.mf File
Next, add a manifest file named manifest.mf that describes your bundle. It will be used by
the framework to get information about you bundle and to deploy it successfully.

Add the following text to the manifest.mf file:
Manifest-Version: 2.0
Bundle-Name: simplebundle
Bundle-SymbolicName: simplebundle
Bundle-Version: 1.0.0
Bundle-Description: Demo Bundle for the KF OSGi tutorial
Bundle-Vendor: Knopflerfish
Bundle-Activator: org.knopflerfish.tutorial.simplebundle.impl.Activator
Bundle-Category: example
Import-Package: org.osgi.framework

The most important properties here are Bundle-Activator and Import-Package.
Bundle-Activator tells the framework which class is your Activator class, this is a kind of
“main” class for your bundle.

In our example, we will later create a
org.knopflerfish.simplebundle.impl.Activator class and this class will be
launched by the framework once we deploy and start the bundle. The Import-Package
property tells the framework that our bundle needs to have access to all classes contained in the
org.osgi.framework package. Generally, every bundle that you create needs to have

Knopflerfish OSGi Tutorial v2 page 7

access to the classes of the OSGi framework.

3.3 Create an Ant build file
We will use Ant to build the project. Create a build.xml file in the top of your directory
structure and add the following targets:
<?xml version="1.0"?>
<project name="simplebundle" default="all">

 <property name="kf.dir" location="../.."/>

 <property name="framework.jar"

location="${kf.dir}/knopflerfish.org/osgi/framework.jar"/>

 <target name="all" depends="init,compile,jar"/>

 <target name="init">
<mkdir dir="out/classes"/>

 </target>

 <target name="compile">
<javac destdir = "out/classes"

 debug = "on"
 srcdir = "src">

 <classpath>
<pathelement location="${framework.jar}"/>

 </classpath>
</javac>

 </target>

 <target name="jar">
<jar basedir = "out/classes"

 jarfile = "out/${ant.project.name}.jar"
 compress = "true"
 includes = "**/*"
 manifest = "manifest.mf"/>

 </target>

 <target name="clean">
<delete dir = "out"/>

 </target>
</project>

Note: You have to set the kf.dir property to the installation dir mentioned on page 4.

You can now test run the build.xml file. In Eclipse, right-click on the build.xml file and
choose Run > Ant Build. The build file should complete successfully. If not, check your
directory structure and make changes where necessary.

3.4 Create the Activator class
Most bundles have an Activator class, specified in the bundle's manifest.mf file. The
Activator class implements the BundleActivator interface. This interface requires the
implementation of two methods, start() and stop(), which are used by the framework to
manage your bundle. See the OSGi R4 specification, chapter 4 "Life Cycle Layer" for details.

Create a org.knopflerfish.tutorial.simplebundle.impl package. In OSGi
programming you typically separate the service interfaces from their implementation. As our
first bundle will not register any services, the

Knopflerfish OSGi Tutorial v2 page 8

org.knopflerfish.tutorial.simplebundle package will be empty. The impl
subpackage will store the Activator class that starts our bundle.

Now create a class called Activator that implements the BundleActivator interface:

package org.knopflerfish.tutorial.simplebundle.impl;

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

public class Activator implements BundleActivator {
 public static BundleContext bc = null;

 public void start(BundleContext bc) throws Exception {
 Activator.bc = bc;
 }

 public void stop(BundleContext bc) throws Exception {
 Activator.bc = null;
 }
}

Notice that the start() and stop() methods receive an BundleContext object. You
should always store this object once you get it and set the reference back to null when the bundle
is stopped. That way, the Garbage Collector can do its work and free unused resources.
Next, we create a Thread subclass, that will print out “Hello World” every two seconds.
package org.knopflerfish.tutorial.simplebundle.impl;

public class HelloWorldThread extends Thread {
 private boolean running = true;

 public HelloWorldThread() {
 super("Hello World thread");
 }

 public void run() {
 while (running) {
 System.out.println("Hello World!");
 try {
 Thread.sleep(2000);
 } catch (InterruptedException e) {
 System.out.println("HelloWorldThread ERROR: " + e);
 }
 }
 System.out.println("thread stopped");
 }

 public void stopThread() {
 System.out.println("stopping thread");
 this.running = false;
 }
}

Finally, we have to create a new thread while the bundle is started (in the start() method)
and we have to stop the thread when the bundle is stopped. We also add some debugging
code to see when the bundle ist started and stopped:
package org.knopflerfish.tutorial.simplebundle.impl;

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

Knopflerfish OSGi Tutorial v2 page 9

public class Activator implements BundleActivator {
 public static BundleContext bc = null;

 private HelloWorldThread thread = null;

 public void start(BundleContext bc) throws Exception {
 System.out.println("SimpleBundle starting...");
 Activator.bc = bc;
 thread = new HelloWorldThread();
 thread.start();
 }

 public void stop(BundleContext bc) throws Exception {
 System.out.println("SimpleBundle stopping...");
 thread.stopThread();
 thread.join();
 }
}

3.5 Build and install your first bundle
Again, build the project using the build.xml file. You should now see a simplebundle.jar file
in the ./out directory. Open Knopflerfish and choose File>Open Bundle. Choose the
simplebundle.jar file and install the bundle. The bundle is automatically selected and the icon
view is scrolled to its icon, but the bundle is not yet started.

Tip: Drag & Drop of the jar file into the desktop works on Windows platforms.

Start the bundle using the start icon in the desktop, of the Bundle>Start menu item.

Now, every five seconds, the bundle prints out a new "Hello World" to the console. Try to start
and stop the bundle using the buttons of the Knopflerfish OSGi Desktop.

Knopflerfish OSGi Tutorial v2 page 10

Congratulations!
You just created and installed your first bundle!

Knopflerfish OSGi Tutorial v2 page 11

Figure 5: KF Desktop after installing and starting the Hello World Bundle

Figure 4: SimpleBundle running

4 Creating your first service
This chapter will help you to create your first service. Again, we need to create a bundle, but this
time our interface package will not be empty. It will contain the service interface, which is a
simple Java interface.

First, copy your SimpleBundle project and name it DateService. The service that you will create
will format a given Date object and return the formatted date. Make sure that you change the
build.xml file and the manifest.mf file to meet the names of the newly created bundle.

4.1 Update the manifest.mf File
There is one small change in the manifest.mf file: we must add an Export-Package
property. Otherwise, other services won't be able to retrieve the service interface and thus will
not be able to use our service.

Make sure that your manifest.mf file for the new project looks like this:

Manifest-Version: 2.0
Bundle-Name: dateservice
Bundle-SymbolicName: org.knopflerfish.tutorial.dateservice
Bundle-Version: 1.0.0
Bundle-Description: Demo Service Bundle for the KF OSGi tutorial
Bundle-Vendor: Knopflerfish
Bundle-Activator: org.knopflerfish.tutorial.dateservice.impl.Activator
Bundle-Category: example
Import-Package: org.osgi.framework
Export-Package: org.knopflerfish.tutorial.dateservice

4.2 Create the service interface
Notice that we also renamed the packages to org.knopflerfish.tutorial.dateservice. Create a Java
interface called DateService:

package org.knopflerfish.tutorial.dateservice;
import java.util.Date;

public interface DateService {
 public String getFormattedDate(Date date);
}

Knopflerfish OSGi Tutorial v2 page 12

4.3 Create the service implementation
Next, we create the DateService implementation in the impl subpackage:

package org.knopflerfish.tutorial.dateservice.impl;

import java.text.DateFormat;
import java.util.Date;
import org.knopflerfish.tutorial.dateservice.DateService;

public class DateServiceImpl implements DateService {
 public String getFormattedDate(Date date) {
 return DateFormat.getDateInstance(DateFormat.SHORT)
 .format(date);
 }
}

The implementation of our service interface is rather easy, but this is OK for now. The
implementation simply returns a formatted date in short style.

4.4 Create an Activator that registers the date service
Finally we have to register our service. This will be done in the start() method of our
Activator class. We first create a service implementation and then register this service under the
name of the service interface. All registering operations are done via methods in the
BundleContext object, which acts as glue between our bundle and the framework.

package org.knopflerfish.tutorial.dateservice.impl;

import java.util.Hashtable;
import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;
import org.osgi.framework.Constants;
import org.osgi.framework.ServiceRegistration;

import org.knopflerfish.tutorial.dateservice.DateService;

public class Activator implements BundleActivator {
 public static BundleContext bc = null;

 public void start(BundleContext bc) throws Exception {
 System.out.println(bc.getBundle().getHeaders().get
 (Constants.BUNDLE_NAME) + " starting...");
 Activator.bc = bc;

 DateService service = new DateServiceImpl();
 ServiceRegistration registration =
 bc.registerService(DateService.class.getName(),
 service,
 new Hashtable());
 System.out.println("Service registered: DateService");
 }

 public void stop(BundleContext bc) throws Exception {
 System.out.println(bc.getBundle().getHeaders().get
 (Constants.BUNDLE_NAME) + " stopping...");
 Activator.bc = null;
 }
}

Knopflerfish OSGi Tutorial v2 page 13

The registerService() method of the BundleContext receives three parameters: the first
parameter is the name of the service interface. The second is the service implementation. The
third parameter can be used to supply additional information about the service as key/value pairs.
In this example we don't add any key/value pairs.

Note the small trick of getting the information from the bundle's manifest headers to display a
meaningful debug text.

4.5 Build and install the date service bundle
Again, build the bundle using the build.xml file. Make sure that you changed the name of the
bundle jar file to something like dateservice.jar. Install and start it using the KF Desktop.
You should see the debug messages that you added to the code. The next bundle that you will
create will use the service that you just registered.

Knopflerfish OSGi Tutorial v2 page 14

5 Using other services
Copy the DateService project and rename it to DateServiceUser. Don't forget to rename the file
names and property names in the build.xml file, the manifest.mf file and also change the package
names of the new project.

The bundle that you will create will only use services, so again, we will have an empty service
package. The only class that you have to create for this bundle is a new Activator class. This
Activator will look up the DateService and use it.

The Desktop's graph view may be used to view the final result. It displays relationships between
bundles by painting links from a central bundle to the depending bundles.

5.1 Update the manifest.mf file
Your manifest for the DateService user bundle should look like this

Manifest-Version: 2.0
Bundle-Name: dateserviceuser
Bundle-SymbolicName: org.knopflerfish.tutorial.dateserviceuser
Bundle-Version: 1.0.0
Bundle-Description: Demo Date Service User Bundle for the KF OSGi tutorial
Bundle-Vendor: Knopflerfish
Bundle-Activator: org.knopflerfish.tutorial.dateserviceuserbad.impl.Activator
Bundle-Category: example
Import-Package: org.osgi.framework,org.knopflerfish.tutorial.dateservice

Notice that we added a comma as separator and a new package name to the Import-Package
header. We thus declare that our bundle needs to have access to the
org.knopflerfish.tutorial.dateservice package. A framework will always
check that this package is available to the bundle before the Activator is started. If the package is
not available, the bundle cannot be resolved. See the OSGi R4 specification, chapter 3, Module

Knopflerfish OSGi Tutorial v2 page 15

Figure 6: The dateservice bundle exporting packages and a service

Layer for more information.

5.2 Retrieve a service – the bad way
Whenever you retrieve a service, you should understand that an OSGi Framework is a quite
dynamic place where services might be appear and disappear at any time. It is very important to
double-check that you really retrieved a valid service object and not null whenever you get a
service. Soon after using the service, you should also “unget” it, which means that the
framework is informed that you do not use the service any longer.

Our first example, the easiest one but also the worst regarding code quality, retrieves the
DateService from the BundleContext and uses the service. We will show you later why this code
is problematic in several ways.

package org.knopflerfish.tutorial.dateserviceuser.impl;

import java.util.Date;
import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;
import org.osgi.framework.Constants;
import org.osgi.framework.ServiceReference;

import org.knopflerfish.tutorial.dateservice.DateService;

public class Activator implements BundleActivator {
 public static BundleContext bc = null;

 public void start(BundleContext bc) throws Exception {
 System.out.println(bc.getBundle().getHeaders()
 .get(Constants.BUNDLE_NAME) +
 " starting...");
 Activator.bc = bc;
 ServiceReference reference =
 bc.getServiceReference(DateService.class.getName());

 DateService service = (DateService)bc.getService(reference);
 System.out.println("Using DateService: formatting date: " +
 service.getFormattedDate(new Date()));
 bc.ungetService(reference);
 }

 public void stop(BundleContext bc) throws Exception {
 System.out.println(bc.getBundle().getHeaders()
 .get(Constants.BUNDLE_NAME) +
 " stopping...");
 Activator.bc = null;
 }
}

We first retrieve a ServiceReference from the BundleContext. The getServiceReference()
method simply asks for the name of the service interface that we would like to use. Once we
have a ServiceReference, we use the getService() method to acquire the service
implementation object, cast it to DateService and use it.

You can now build the project and install it using the KF desktop. If your DateService is started,
everything will be fine and you will see the debug output. The problem is that there is no
guarantee that the DateService is actually available. Try the following: stop both bundles and
then first start the bundle that uses the DateService.

Knopflerfish OSGi Tutorial v2 page 16

You will probably get a NullPointerException, because the
getServiceReference() returned null (no service was yet registered, so the framework
could not give you what you asked for).

Knopflerfish OSGi Tutorial v2 page 17

Figure 7: NullPointerException when no service is available

A somewhat better solution would be to check if the return value is null:

ServiceReference reference =
 bc.getServiceReference (DateService.class.getName());

if (reference != null) {
 DateService service = (DateService)bc.getService(reference);
 System.out.println("Using DateService: formatting date: " +
 service.getFormattedDate(new Date()));
 bc.ungetService(reference);
} else {
 System.out.println("No Service available!");
}

This solves the problem with the NullPointerException, but: if our service is not available at
startup, nothing happens and the bundle will never use the service! Somehow we should
regularly check if the service is available or not. Or even better: the framework should inform us,
as soon as a suitable service is available.

You can achieve this, using ServiceListeners.

5.3 Using a ServiceListener to dynamically bind services
Using the BundleContext, it is possible to register a ServiceListener with the framework. With an
optional filter object, you can exactly specify for which services you want to receive
ServiceEvents. Service events are sent out by the framework whenever a new service registers,
unregisters or modifies its properties.
The next example shows the modified start()-method code. First, a ServiceListener is
registered with the framework. The filter string is in LDAP style (see OSGi R4 spec, section
3.2.6 "Filter Syntax") and tells the framework only to send service events concerning the
DateService interface to us. Notice that we do not retrieve the DateService directly in the start()
method. Instead, we do a little trick and obtain all services that match our filter. Then, we'll fake
ServiceRegistered events for every service that is found (in our example, this will just be one
service and thus one ServiceEvent). Add a ServiceListener implementation instance to your
Activator.

 public void start(BundleContext bc) throws Exception {
 Activator.bc = bc;
 log("starting");

 String filter = "(objectclass=" + DateService.class.getName() + ")";
 bc.addServiceListener(listener, filter);

 ServiceReference references[] = bc.getServiceReferences(null, filter);
 for (int i = 0; references != null && i < references.length; i++)
 {
 listener.serviceChanged(new ServiceEvent(ServiceEvent.REGISTERED,
 references[i]));
 }
 }

Knopflerfish OSGi Tutorial v2 page 18

The listener.serviceChanged() method will receive all ServiceEvents for
DateService service changes. The method I implemented starts to use a service once a
DateService Registers (it starts a thread that uses the service every second or so) and stops once
the service unregisters. If the service changes (e.g. the properties of the service changed), we
stop using the service, obtain a new reference to the service and start again.

 ServiceListener listener = new ServiceListener() {
 public void serviceChanged(ServiceEvent event) {
 switch (event.getType()) {
 case ServiceEvent.REGISTERED:
 log("ServiceEvent.REGISTERED");
 dateService =

(DateService)Activator.bc
.getService(event.getServiceReference());

 startUsingService();
 break;
 case ServiceEvent.MODIFIED:
 log("ServiceEvent.MODIFIED received");
 stopUsingService();
 dateService =

(DateService)Activator.bc
.getService(event.getServiceReference());

 startUsingService();
 break;
 case ServiceEvent.UNREGISTERING:
 log("ServiceEvent.UNREGISTERING");
 stopUsingService();
 break;
 }
 }

 private void stopUsingService() {
 thread.stopThread();
 try {
 thread.join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 dateService = null;
 }

 private void startUsingService() {
 thread = new ServiceUserThread(dateService, "listener example");
 thread.start();
 }
 };

Again, you can now build your project and install the bundle jar file (or update it). You will see
that our bundle starts to use the DateService as soon as it is available. Try to stop the
DateService, while the bundle is active. You will see that the bundle stops using the service and
waits until it becomes again available. Although the ServiceUserThread class is just a basic
thread, here is the code for it.

Knopflerfish OSGi Tutorial v2 page 19

public class ServiceUserThread extends Thread {
 private DateService dateService = null;
 private boolean running = true;

 public ServiceUserThread(DateService dateService, String threadName) {
 super(threadName);
 this.dateService = dateService;
 }

 public void run() {
 String formattedDate = null;

 while (running) {
 Date date = new Date();
 try {
 formattedDate = dateService.getFormattedDate(date);
 } catch (RuntimeException e) {
 System.out.println("RuntimeException occured during service usage: "
 + e);
 }
 System.out.println(getName() + ": converted date has value: "
 + formattedDate);
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 System.out.println("ServiceUserThread ERROR: " + e);
 }
 }
 }

 public void stopThread() {
 System.out.println("stopping " + this);
 this.running = false;
 }
}

As you have seen, there is pretty much code to write to be able to dynamically start and stop
using other services. Fortunately, there is a utility class available, that helps you to solve this
problem. The ServiceTracker class is available for you to monitor services. We will now
show you how to use the ServiceTracker.

Knopflerfish OSGi Tutorial v2 page 20

5.4 Using a ServiceTracker to track services
A ServiceTracker object automatically tracks all ServiceEvents for a specified service
and gives you the possibility to customize what should happen, once a servcie appeards or
disappears. To enable this customization, you have to implement a
ServiceTrackerCustomizer interface and provide it to a ServiceTracker object. The
following code is the updated version of the Activator's start() method. You will see, that
most code actually was moved out of this Activator because we now use a ServiceTracker.
 public void start(BundleContext bc) throws Exception {
 Activator.bc = bc;
 log("starting");
 tracker = new ServiceTracker(bc,
 DateService.class.getName(),
 customizer);
 tracker.open();
 }

 public void stop(BundleContext bc) throws Exception {
 log("stopping");
 tracker.close();
 Activator.bc = null;
 }

We also add an implementation of the ServiceTrackerCustomizer interface (as a new
unnamed class):
 ServiceTrackerCustomizer customizer = new ServiceTrackerCustomizer() {
 public Object addingService(ServiceReference reference) {
 log("addingService");
 DateService service = (DateService) bc.getService(reference);
 if (thread == null) {
 thread = new ServiceUserThread(service, "tracker example");
 thread.start();
 return service;
 } else {
 return service;
 }
 }

 public void modifiedService(ServiceReference reference, Object
 serviceObject) {
 thread.stopThread();
 try {
 thread.join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 DateService service = (DateService) bc.getService(reference);
 thread = new ServiceUserThread(service, "tracker example");
 thread.start();
 }

 public void removedService(ServiceReference reference, Object
 serviceObject) {
 log("removedService");
 thread.stopThread();
 try {
 thread.join();

Knopflerfish OSGi Tutorial v2 page 21

 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 thread = null;
 }
 };

The addingService() method gets the service and starts a new thread if none exists. We
check if the thread is null, because only then we would like to start exactly one new thread. It
could happen that many DateServices are registered, but even then we only want to use one
service in one thread. The modifiedService() method simply stops the execution of the
thread and restarts with the new service. To extend the usefulness, we could actually check if the
service that changed is really the service that we currently use. Only if our service changed, there
is a need to restart.

Finally, the removedService() method simply stops the execution of the thread. The service
is not used any more, after the method returns.

5.5 Using Declarative Services to track services
All of the previous methods require quite a lot of code to handle service registrations and
unregistrations. To make this easier, OSGi has specified the Declarative Services component (see
OSGi R4 compendium, chapter 112).

This component (which is incluced in Knopflerfish and implemented as a bundle itself) allows a
bundle to declare its service dependencies in an XML file, and inject service objects directly into
bundle class methods.

To use declarative services you need to create the an XML component descriptor file,
component.xml and add it to the bundle jar.

<?xml version="1.0" encoding="iso-8859-1"?>
<component
 xmlns = "http://www.osgi.org/xmlns/scr/v1.0.0"
 name = "kf.tutorial.datelisten">
 <implementation
class="org.knopflerfish.tutorial.dateserviceuserdeclarative.impl.Component"/>
 <reference
 name = "DATESERVICE"

interface = "org.knopflerfish.tutorial.dateservice.DateService"
bind = "setDateService"
unbind = "unsetDateService"

 />
</component>

The above description file defines a component which has an implementation class
org.knopflerfish.tutorial.dateserviceuserdeclarative.impl.Compon
ent, similar to a bundle activator, but it need not implement anything more than the two
methods setDateService(DateService) and unsetDateService(DatService)

As soon this new component bundle is running and a service if the type
org.knopflerfish.tutorial.dateservice.DateService registers, the bind
method will automatically be called. When the service unregister, the unbind metod will be

Knopflerfish OSGi Tutorial v2 page 22

called.

Additionally, the description file must be referenced from the bundle's manifest using the
Service-Component header. So, if the component.xml is store in the bundle as OSGI-
INF/component.xml, this manifest line should be added:

Service-Component: OSGI-INF/component.xml

The component implementation can now simply be written as

package org.knopflerfish.tutorial.dateserviceuserdeclarative.impl;

import org.knopflerfish.tutorial.dateservice.DateService;

public class Component {
 DateService dateService;
 ServiceUserThread thread;

 protected void setDateService(DateService dateService) {
 this.dateService = dateService;

 if(thread == null) {
 thread = new ServiceUserThread(dateService);
 thread.start();
 }
 }

 protected void unsetDateService(DateService dateService) {
 this.dateService = null;

 if(thread != null) {
 thread.stopThread();
 try {
 thread.join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 thread = null;
 }
 }
}

Note how no references to OSGi packages are needed in this example!

Knopflerfish OSGi Tutorial v2 page 23

6 Example source code

All source code in this tutorial, including Ant build files, manifest files and component XML
descriptors are available on the Knopfler web site at:

https://www.knopflerfish.org/svn/knopflerfish.org/trunk/docs/kf_osgi_tutorial/example_source

1. simplebundle
the simple Hello World bundle used in chapter 3

2. dateservice
the DateService interface and implementation used in chapter 4

3. dateserviceuser_bad
the DateService user bundle as described in section 5.2

4. dateserviceuser_bad2
the DateService user bundle as described in section 5.2, but with a null check

5. dateserviceuser_listener
the DateService user bundle as described in section 5.3

6. dateserviceuser_tracker
the DateService user bundle as described in section 5.4

7. dateserviceuser_declarative
the DateService user declarative component as described in section 5.5

Note: all of the dateserviceuser_ bundles uses the same ServiceUserThread class. This
class is copied into all of these bundles, but could just as easily have been put in a common
utility bundle.

Knopflerfish OSGi Tutorial v2 page 24

https://www.knopflerfish.org/svn/knopflerfish.org/trunk/docs/kf_osgi_tutorial/example_source

7 References
1. Gravity: Richard S. Hall, OSGi and Gravity Service Binder Tutorial, 2004

http://oscar-osgi.sourceforge.net/tutorial/
2. KF: Erik Wistrand, Develop OSGi Bundles, 2004

http://www.knopflerfish.org/programming.html
3. OSGi Intro: OSGi Alliance, OSGi Technology, 2004,

http://www.osgi.org/osgi_technology/index.asp?section=2
4. OSGi Platform: OSGi Initiative, OSGi Service Platform R

http://www.osgi.org

Knopflerfish OSGi Tutorial v2 page 25

	1 Introduction
	1.1 Original introduction by Sven Haiges
	1.2 Updated introduction by Erik Wistrand

	2 Installing Knopflerfish OSGi
	3 Creating your first bundle
	3.1 Create a new project for your first bundle
	3.2 Create the manifest.mf File
	3.3 Create an Ant build file
	3.4 Create the Activator class
	3.5 Build and install your first bundle

	4 Creating your first service
	4.1 Update the manifest.mf File
	4.2 Create the service interface
	4.3 Create the service implementation
	4.4 Create an Activator that registers the date service
	4.5 Build and install the date service bundle

	5 Using other services
	5.1 Update the manifest.mf file
	5.2 Retrieve a service – the bad way
	5.3 Using a ServiceListener to dynamically bind services
	5.4 Using a ServiceTracker to track services
	5.5 Using Declarative Services to track services

	6 Example source code
	7 References

